Categories Technology

Generative AI hype distracts us from AI’s more important breakthroughs

On April 28, 2022, at a highly anticipated concert in Spokane, Washington, the musician Paul McCartney astonished his audience with a groundbreaking application of AI: He began to perform with a lifelike depiction of his long-deceased musical partner, John Lennon. 

Using recent advances in audio and video processing, engineers had taken the pair’s final performance (London, 1969), separated Lennon’s voice and image from the original mix and restored them with lifelike clarity.


This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next.


For years, researchers like me had taught machines to “see” and “hear” in order to make such a moment possible. As McCartney and Lennon appeared to reunite across time and space, the arena fell silent; many in the crowd began to cry. As an AI scientist and lifelong Beatles fan, I felt profound gratitude that we could experience this truly life-changing moment. 

Later that year, the world was captivated by another major breakthrough: AI conversation. For the first time in history, systems capable of generating new, contextually relevant comments in real time, on virtually any subject, were widely accessible owing to the release of ChatGPT. Billions of people were suddenly able to interact with AI. This ignited the public’s imagination about what AI could be, bringing an explosion of creative ideas, hopes, and fears.

Having done my PhD on AI language generation (long considered niche), I was thrilled we had come this far. But the awe I felt was rivaled by my growing rage at the flood of media takes and self-appointed experts insisting that generative AI could do things it simply can’t, and warning that anyone who didn’t adopt it would be left behind.

This kind of hype has contributed to a frenzy of misunderstandings about what AI actually is and what it can and cannot do. Crucially, generative AI is a seductive distraction from the type of AI that is most likely to make your life better, or even save it: Predictive AI. In contrast to AI designed for generative tasks, predictive AI involves tasks with a finite, known set of answers; the system just has to process information to say which answer is right. A basic example is plant recognition: Point your phone camera at a plant and learn that it’s a Western sword fern. Generative tasks, in contrast, have no finite set of correct answers: The system must blend snippets of information it’s been trained on to create, for example, a novel picture of a fern. 

The generative AI technology involved in chatbots, face-swaps, and synthetic video makes for stunning demos, driving clicks and sales as viewers run wild with ideas that superhuman AI will be capable of bringing us abundance or extinction. Yet predictive AI has quietly been improving weather prediction and food safety, enabling higher-quality music production, helping to organize photos, and accurately predicting the fastest driving routes. We incorporate predictive AI into our everyday lives without evening thinking about it, a testament to its indispensable utility.

To get a sense of the immense progress on predictive AI and its future potential, we can look at the trajectory of the past 20 years. In 2005, we couldn’t get AI to tell the difference between a person and a pencil. By 2013, AI still couldn’t reliably detect a bird in a photo, and the difference between a pedestrian and a Coke bottle was massively confounding (this is how I learned that bottles do kind of look like people, if people had no heads). The thought of deploying these systems in the real world was the stuff of science fiction. 

Yet over the past 10 years, predictive AI has not only nailed bird detection down to the specific species; it has rapidly improved life-critical medical services like identifying problematic lesions and heart arrhythmia. Because of this technology, seismologists can predict earthquakes and meteorologists can predict flooding more reliably than ever before. Accuracy has skyrocketed for consumer-facing tech that detects and classifies everything from what song you’re thinking of when you hum a tune to which objects to avoid while you’re driving—making self-driving cars a reality. 

In the very near future, we should be able to accurately detect tumors and forecast hurricanes long before they can hurt anyone, realizing the lifelong hopes of people all over the world. That might not be as flashy as generating your own Studio Ghibli–ish film, but it’s definitely hype-worthy. 

Predictive AI systems have also been shown to be incredibly useful when they leverage certain generative techniques within a constrained set of options. Systems of this type are diverse, spanning everything from outfit visualization to cross-language translation. Soon, predictive-generative hybrid systems will make it possible to clone your own voice speaking another language in real time, an extraordinary aid for travel (with serious impersonation risks). There’s considerable room for growth here, but generative AI delivers real value when anchored by strong predictive methods.

To understand the difference between these two broad classes of AI, imagine yourself as an AI system tasked with showing someone what a cat looks like. You could adopt a generative approach, cutting and pasting small fragments from various cat images (potentially from sources that object) to construct a seemingly perfect depiction. The ability of modern generative AI to produce such a flawless collage is what makes it so astonishing.

Alternatively, you could take the predictive approach: Simply locate and point to an existing picture of a cat. That method is much less glamorous but more energy-efficient and more likely to be accurate, and it properly acknowledges the original source. Generative AI is designed to create things that look real; predictive AI identifies what is real. A misunderstanding that generative systems are retrieving things when they are actually creating them has led to grave consequences when text is involved, requiring the withdrawal of legal rulings and the retraction of scientific articles.

Driving this confusion is a tendency for people to hype AI without making it clear what kind of AI they’re talking about (I reckon many don’t know). It’s very easy to equate “AI” with generative AI, or even just language-generating AI, and assume that all other capabilities fall out from there. That fallacy makes a ton of sense: The term literally references “intelligence,” and our human understanding of what “intelligence” might be is often mediated by the use of language. (Spoiler: No one actually knows what intelligence is.) But the phrase “artificial intelligence” was intentionally designed in the 1950s to inspire awe and allude to something humanlike. Today, it just refers to a set of disparate technologies for processing digital data. Some of my friends find it helpful to call it “mathy maths” instead.

The bias toward treating generative AI as the most powerful and real form of AI is troubling given that it consumes considerably more energy than predictive AI systems. It also means using existing human work in AI products against the original creators’ wishes and replacing human jobs with AI systems whose capabilities their work made possible in the first place—without compensation. AI can be amazingly powerful, but that doesn’t mean creators should be ripped off

Watching this unfold as an AI developer within the tech industry, I’ve drawn important lessons for next steps. The widespread appeal of AI is clearly linked to the intuitive nature of conversation-based interactions. But this method of engagement currently overuses generative methods where predictive ones would suffice, resulting in an awkward situation that’s confusing for users while imposing heavy costs in energy consumption, exploitation, and job displacement. 

We have witnessed just a glimpse of AI’s full potential: The current excitement around AI reflects what it could be, not what it is. Generation-based approaches strain resources while still falling short on representation, accuracy, and the wishes of people whose work is folded into the system. 

If we can shift the spotlight from the hype around generative technologies to the predictive advances already transforming daily life, we can build AI that is genuinely useful, equitable, and sustainable. The systems that help doctors catch diseases earlier, help scientists forecast disasters sooner, and help everyday people navigate their lives more safely are the ones poised to deliver the greatest impact. 

The future of beneficial AI will not be defined by the flashiest demos but by the quiet, rigorous progress that makes technology trustworthy. And if we build on that foundation—pairing predictive strength with more mature data practices and intuitive natural-language interfaces—AI can finally start living up to the promise that many people perceive today.

Dr. Margaret Mitchell is a computer science researcher and chief ethics scientist at AI startup Hugging Face. She has worked in the technology industry for 15 years, and has published over 100 papers on natural language generation, assistive technology, computer vision, and AI ethics. Her work has received numerous awards and has been implemented by multiple technology companies.

Original Source: https://www.technologyreview.com/2025/12/15/1129179/generative-ai-hype-distracts-us-from-ais-more-important-breakthroughs/

Disclaimer: This article is a reblogged/syndicated piece from a third-party news source. Content is provided for informational purposes only. For the most up-to-date and complete information, please visit the original source. Digital Ground Media does not claim ownership of third-party content and is not responsible for its accuracy or completeness.

More From Author

Leave a Reply

Your email address will not be published. Required fields are marked *